
Open Source Scientific Journal Vol.1, no.1, 2009

Upon a Trading System Architecture based on OpenMQ Middleware

Claudiu VINŢE
Opteamsys Solutions, Bucharest, Romania

claudiu.vinte@opteamsys.com

Abstract: In this paper we shall discuss how an open source product, namely
OpenMQ middleware, can be employed as a reliable intercommunication platform for a
trading system, and what impact it has on the architecture of such a system. Our design and
implementation concern an academic simulation-trading environment, intended to provide
both a platform for future experiments with trading systems architectures, components and
applications, and a framework for research on trading strategies, trading algorithm designs
and equity markets analysis tools.

Keywords: trading system architecture, distributed computing, open source sollutions,
Message Oriented Middleware (MOM), OpenMQ, Java Message Service (JMS).

1. Some preliminary considerations upon trading system designs

An electronic trading system resides normally within a brokerage house, and has to
offer essentially the following three indispensable components/functionalities (see Figure 1):

1. a client side trading application, commonly implemented by the means of a Graphical
User Interface (GUI), through which the investor may be able to place buy/sell orders
and receive markets executions along with market prince data and portfolio updates;

2. an Order Management Server (OMS), which is the hearth of the entire system, meant
to deal with the clients’ orders, send them to the stock exchange, and process the
received execution data from the market, and then flow it back to the clients [1];

3. a battery of dedicated communication lines that connect the brokerage house to a stock
exchange, or multiple stock exchanges and various market sections within them.

Client 1

OMS

Client 2 Client n

Line 1 Line 2 Line k

Stock
Exchange

. . .

. . .

Fig. 1. The generic, simplified architecture of a trading system

146

Open Source Scientific Journal Vol.1, no.1, 2009

The necessity of these major components, and the way they are to interact with each
other, determined, organically, the architectural approach for an electronic trading system [2]
[3].

Obviously, a straightforward design is to provide a client-server architecture, very
similar to the one depicted in Figure 1, in which case the client applications are directly, and
tightly connected to the OMS through TCP sockets, handling messages defined by a
proprietary API [4][5]. Although it may deliver a very good response time for the overall
system, the shortcomings of this approach come precisely from its simplicity: the tightly
coupled components are all impacted, anytime a change has to be done for accommodating a
new requirement, either on client side, or on serve side - the common communication API
being also affected. The lack of flexibility in developing and maintaining such a system
motivated, as in many other domains that rely on distributed computing, the search for more
efficient approaches, concerning the communication between the various components of a
distributed the system, particularly on a heterogeneous environment, when it comes to the
hardware and operating systems . The most cost effective way to integrate heterogeneous
components is not to recreate them as homogeneous elements, but to provide a layer that
allows them to communicate despite their differences. This layer, called middleware, allows
software applications that have been developed independently and that run on different
network platforms to interact with one another [6]. Conceptually, the middleware resides
between the application layer and the platform layer (the operating system and the underlying
network services). Now, a middleware implementation may fall into one of the following
categories:

• Remote Procedure Call, or RPC-based middleware; the approach implements a
linking mechanism that locates remote procedures and makes them transparently
available to the caller, as if they were accessed through local calls; historically, this
type of middleware handled procedure-based programs, but now it may include
object-based elements;

• Object Request Broker, or ORB-based middleware; this implementations enables an
application’s objects to be distributed and shared across heterogeneous networks;

• Message Oriented Middleware, or MOM-based middleware; through this approach,
distributed applications can communicate, and exchange data by sending and
receiving messages.

Although all these models support various levels of interaction between applications
over a network, the main difference between them resides precisely in degree of
interdependency among the components of a system that have to be in place, in order for the
system to behave unitary. With other words, if the RPC-based middleware tend to create
tightly coupled components, whereas ORB-based, and particularly MOM-based systems
allow for a looser coupling of components. We presented in an earlier paper our
implementation of an ORB-based middleware, namely XQuark, and the trading system
architecture built based on it [7][8].

In Figure 2, we synthesize this design, evidencing that the components of the system:
• are not anymore directly interconnected, allowing for a dynamic scaling of the system

- depending on the actual load, and processing capacity of each component, more
OMS, and market lines may be added to the system for coping with needs;

• the communication layer is separated from the business logic of the applications, and
isolated in the network daemon XQuark;

• the applications are to subscribe to set of distributed and shared objects they are
interest in, and the XQuark ORB provides the delivery mechanism of these objects to
the consumer applications, from the application which produce (publish) them.

147

Open Source Scientific Journal Vol.1, no.1, 2009

This design provides for a flexible architecture, but there is one major disadvantage:
the distributed and shared objects handled by the XQuark middleware are not persisted. If a
XQ node goes down unexpectedly, due to a hardware or software failure, the components
connected to the system through that node will miss the flow of objects made available to then
by the publishing application within the system. Even if system may consist, at any given
moment, of multiple instances of the critical consumers and service providers, the fact that an
application may be deprived of the messages intended to it, without any means in place for
recovering the missed messages, considerably diminishes the reliability of the middleware
[9].

Orders DB

Stock
Exchange

. . .

. . . Client n Client 1

OMS

OMDBS

Client 2

The Trading System Inter-application
Communication Platform

Line 1 Line 2 Line k

XQ

XQ

XQ

XQ XQ

XQ
XQ

XQ

Fig. 2. The architecture of a trading system based on XQuark (XQ) ORB platform

2. Why employing an open source messaging solution? JMS as a MOM standard

Compared to an ORB-based middleware, MOM-based systems allow communication
to be accomplished through asynchronous exchange of messages. A Message Oriented
Middleware makes use of a messaging provider (broker) to mediate the messaging operations.
In this parading, the elements of a MOM-based system are client applications, messages, and
MOM messaging provider. Under the broad umbrella of client applications, could be in fact
identified applications that play functionally the role of a client, and others that have the
functional role of a server. All the system applications are perceived as clients of the MOM
messaging provider. Using a MOM system, a client makes an API call to send a message to a
destination managed by the provider. The call invokes provider services to route and deliver
the message to the consumer. Once it has sent the message, the producer can continue
processing flow, relying on the fact the the messaging provider retains the message until a
receiving client retrieves it. In this manner, the MOM-based model, in connection with the
messaging provider, makes it possible to create a system of loosely coupled components.
Such a system can continue to function reliably, without downtime, even when individual

148

Open Source Scientific Journal Vol.1, no.1, 2009

components or connections fail. The client applications are consequently effectively relieved
of every communication issue, except that of sending, receiving and processing messages.
Through an administrative tool coupled with the messaging provider the user can monitor and
tune the performance.

With a MOM-based system there also disadvantages, and the main one results from
the loose coupling itself. With a RPC-base system, the calling function does not return until
the called function has finished its task. In an asynchronous system, the calling client can
continue to load work upon the recipient until the resources needed to handle this work are
depleted and the called component fails. Normally, the conditions in which such a situation
may occur can be minimized, or avoided by monitoring performance, and adjusting message
flow, i.e. the type of work that is not required with a RPC-based system. Therefore, it is
important to take into account the advantages and the liabilities of each kind of system.
Sometimes RPC-based components can be combined with a MOM-based system in order to
obtained the desired functionality, as we shall show below.

A more serious problem with MOM-based system may arise from the fact that they
are commonly implemented as proprietary products, such as TIBCO Rendezvous. The
migration from one proprietary MOM to another can be as painful as it was the adoption of a
MOM in the first place. To resolve this problem, a standard messaging interface is required.
Then application developed to run on one system could also run on the other. Such an
interface should be simple to learn but provide enough features to support sophisticated
messaging applications. Introduced in 1998, the Java Message Service (JMS) aimed to cover
precisely this aspect. JMS specification was originally developed to allow Java applications to
access existing MOM systems. Since its introduction, many existing MOM vendors have
adopted it, and it has been implemented as an asynchronous messaging system in its own right
[10].
JMS specification captured, from its conception, the essential elements of the existing
messaging systems, namely:

• the concept of a messaging provider that routes and deliver messages;
• distinct messaging patterns, or domains such point-to-point messaging and

publish/subscribe messaging;
• facilities for synchronous and asynchronous message receipt;
• support for reliable message delivery;
• common message formats such as text, byte and stream.

All the above-mentioned elements have equally constituted the reasons why we turned
to Open Message Queue (OpenMQ), as the open source MOM implementation of JMS, for
designing a trading system architecture based on it [11].

3. Business logic integration through OpenMQ messaging infrastructure

Departing from the above presented considerations, the proposed architecture for a
simulation trading system based on OpenMQ middleware is illustrated in Figure 3. In this
architecture, the Trading GUI is implemented as a Java application meant to run within a web
browser, and to access the simulation market place through a HTTP server. This approach is
meant for providing a readily available trading environment to the students within an
academic campus. It is important to point out from the very beginning that the diagram does
not show in detail the actual message flows among the components of the system, but merely
the logical connections between these components. It is also important to specify that the

149

Open Source Scientific Journal Vol.1, no.1, 2009

messaging domains employed by the components differ, depending of the functional role
played by each component within the system.

The messages produced by the Trading GUI, and which represent processing requests,
are to be consumed sequentially by the Order Management Server (OMS), or by the Portfolio
Management Server (PMS), and thus, in this direction the communication pattern, or
messaging domain, is point-point-point messaging. The sender of the message (Trading GUI)
produces messages that are stored in a queue by the messaging provider (OpenMQ Broker).
Then the receivers, OMS or PMS in our case, consume these messages from the queue, in the
order in which they were sent, normally FIFO (first in, first out).

The same messaging domain (point-to-point messaging) governs the communication
between the OMS and the Stock Exchange Simulation Engine, in both directions this time.
This is paramount, since a real stock exchange processes investors’ orders sequentially; the
actual time at which an order reaches the stock exchange is in fact a matching criterion for the
matching algorithm. A simulation-matching engine has to perform in the same fashion, thus
the point-to-point domain is natural here.

Physical
Destinations

Java

Client
Runtime

Order
Management

Server

Java

Client
Runtime

Portfolio
Management

Server

Portfolios DB Orders DB

Java Client
Runtime

Stock
Exchange
Simulation

Engine

Persisted Messages
and Broker State

Configuration Files
and Logs

User Repository

OpenMQ
Broker

HTTP Tunnel
Servlet

Web
Server

Java Client
Runtime

Trading
GUI

Firewall

Java Client
Runtime

Trading
GUI

Java Client
Runtime

Trading
GUI

. . .

Fig. 3. The proposed architecture of the trading system based on OpenMQ infrastructure

When it comes to the messages produced by OMS and PMS, and which are meant to
reach back to the Trading GUIs, there it is employed the publish/subscribe messaging. In the
publish/subscribe domain, the message producers, in our case OMS and PMS, are called
publishers, and the message consumers are called subscribers. They exchange messages by

150

Open Source Scientific Journal Vol.1, no.1, 2009

the means of a destination called a topic: publishers produce messages to a topic; subscribers
subscribe to a topic and consume messages from that topic [12]. The Trading GUI, acting as a
subscriber for the messages received from the OMS or PMS (via messaging provider, and
tunneled through by the servlet running within HTTP server) has to have also implemented a
selector, in order to filter out messages that are logically intended to be consumed by it. That
is achieved by having attached a client ID to each call-forward message, coming from a
Trading GUI. Then OMS and PMS reuse that client ID, by inserting it into the call- back
message that is published for being consumed by the Trading GUIs. Each Trading GUI filters
out the messages with a different client ID than its own. The client IDs are managed by the
OpenMQ broker.

Client runtime support is provided in libraries that a linked when building OpenMQ
clients. When a a client code makes an API call to send a message, code in these libraries is
invoked that packages the message bits appropriately for the protocol that will be used to
relay the message to the physical destination on the broker.

Services that provide JMS support and allow clients to connect to the broker (jms,
ssljms, http, https) have a service type NORMAL, and are layered on the top of TCP, TLS,
HTTP or HTTPS protocols.

Services that allow administrators to connect to the broker (admin, ssladmin) have a
service type ADMIN, and are layered on the top of TCP and TLS protocols.

The business logic encapsulated in the components of the system can be largely
preserved and integrated within the architecture based on OpenMQ middleware. By
identifying the input data (the messages that are to be consumed), and the output data (the
messages that are produces) for each component of the trading system, independently of how
the components interact one with another, there were made also improvements by reducing
the overall amount of data that had to be passed between the components of the system.

4. The future of open source software and the academic environment

The open source concept of building reliable software solutions, and the community
dedicated to support this model, have changed dramatically the process of software
development, over the past decade particularly. Many open source project originated from
university campuses and, perhaps, now this adventurous and, turned out to be, fruitful trail has
to go back to its roots. Having access to the actual code of the software and thus, being able to
get actively involved in its development, changed greatly the perception of the generic
software, from being a tradable commodity, to becoming more an intellectual achievement
that can be shared by everyone.

From the commercial usage point of view, the lack of a contractual form of technical
support may be sometimes daunting. One the other hand, the open source community has
proved for many times that it may actually react more promptly than a commercial entity, in
addressing issues related to certain open source software, when reported by a large number of
users.

The academic environment instead, may have only benefits from using open source
software, and participating effectively in its development. There is no better way of
conducting research projects in informatics, than departing from reading source code written
by dedicated enthusiasts.

References

151

Open Source Scientific Journal Vol.1, no.1, 2009

[1] H. McIntyre (editor), How the U.S. Securities Industry Works - Updated and Expanded in
2004), The Summit Group Press, New York, 2004.

[2] R. A. Schwartz, R. Francioni, Equity Markets in Action (The Fundamentals of Liquidity,
Market Structure & Trading), John Wiley & Sons Inc., 2004.

[3] H. McIntyre (editor), Straight Through Processing, The Summit Group Publishing Inc.,
New York, 2004.

[4] R. W. Stevens, “UNIX Network Programming,” Networking APIs: Sockets and XTI,
Second Edition, Vol. 1, Prentice Hall, 1998.

[5] A. S. Tanenbaum, Computer Networks - Fourth Edition, Vrije Universiteit Amsterdam,
The Netherlands, Pearson Education Inc., Prentice Hall PTR, New Jersey, 2003.

[6] A. S. Tanenbaum, S. van Maarten, Distributed Systems - Principles and Paradigm, Vrije
Universiteit Amsterdam, The Netherlands, Prentice Hall, New Jersey, 2002.

[7] C. Vinţe, “Aspecte ale Proiectării unui Order Request Broker (ORB) - Partea I,”
Informatica Economică, Vol. V, No. 2 (18)/2001, INFOREC, Bucharest, 2001.

[8] C. Vinţe, “Aspecte ale Proiectării unui Order Request Broker (ORB) - Partea a II-a,”
Informatica Economică, Vol. V, No. 3 (19)/2001, INFOREC, Bucharest, 2001.

[9] C. Vinţe, “Sisteme distribuite de asistare a tranzacţiilor bursiere – Doctorate Thesis,”
Library of The Bucharest Academy of Economic Studies, Bucharest, 2006.

[10] Sun Microsystems, Inc. – Java Message Service - http://java.sun.com/products/jms/
[11] Sun Microsystems, Inc. - Open Message Queue: Open Source Java Message Service

(JMS) - https://mq.dev.java.net/
[12] Sun Microsystems, Inc. – Sun Java System Message Queue 4.1 – Technical Overview,

Part No: 819-7759, September 2007

Author
Claudiu VINŢE has over twelve years experience in the design and
implementation of software for equity trading systems and automatic
trade processing. He is currently CEO and founder of Opteamsys
Solutions, a software provider in the field of securities trading
technology and equity markets analysis tools. The firm is committed to
the employment of reliable solutions supplied by the open source
community in all aspects of the software development process: from the
operating system platform (Linux), through the IDE (Eclipse), to the
data base server (MySQL), HTTP server (Apache Tomcat), and the
middleware layer (OpenMQ/JMS) for inter-application communication.

Previously he was for six years with Goldman Sachs in Tokyo, Japan, as Senior Analyst
Developer in the Trading Technology Department. In March 2006, Goldman Sachs
acknowledged the importance of the integer allocation algorithm created by Claudiu, and filed
in his name a patent application for Methods and apparatus for optimizing the distribution of
trading executions with the US Patent Office (USPTO Application 20060224495). Claudiu
graduated the Faculty of Cybernetics, Statistics and Economic Informatics in 1994,
Department of Economic Informatics, within The Bucharest Academy of Economic Studies.
He holds a PhD in Economics from The Bucharest Academy of Economic Studies. His
domains of interest and research include combinatorial algorithms, middleware components,
and web technologies for equity markets analysis.

152

