
1

Upon a Message-Oriented Trading API

Claudiu VINŢE
Opteamsys Solutions, Bucharest, Romania

claudiu.vinte@opteamsys.com

In this paper, we introduce the premises for a trading system application-programming
interface (API) based on a message-oriented middleware (MOM), and present the results of
our research regarding the design and the implementation of a simulation-trading system
employing a service-oriented architecture (SOA) and messaging. Our research has been
conducted with the aim of creating a simulation-trading platform, within the academic
environment, that will provide both the foundation for future experiments with trading
systems architectures, components, APIs, and the framework for research on trading
strategies, trading algorithm design, and equity markets analysis tools.
Mathematics Subject Classification: 68M14 (distributed systems).
Keywords: trading system API, straight-through processing, distributed computing, service-
oriented architecture (SOA), message-oriented middleware (MOM), Java Message Service
(JMS), OpenMQ

1. A brief introduction to trading APIs
The information technology (IT) has made exchanges far more efficient in handling heavy
volume in a timely fashion and at reasonable cost. Furthermore, IT enables geographically
dispersed marketplaces to be more effectively consolidated [1] [2]. The strategic advantage of
an electronic platform can be summarized in form of the following beneficial effects:

• support for an efficient vertical integration (from trading to settlement);
• supply the premises for a national and regional strategy (horizontal integration);
• offers the fundaments for a decentralized market access for participants;
• continuous or extended trading hours;
• better overall services for members (availability, functionality, support);
• means for an effective centralized market surveillance from the national regulatory

bodies.

In nowadays trading environment, a market center strives to offer a fast and reliable access,
from anywhere and anytime, aiming to achieve a fully integrated straight-through processing
(STP). The STP desiderate means that, once an order is placed through the order routing
channel, it follows a fully integrated online procedure, passing seamlessly from its entrance
on the order book, to matching on the exchange, and on through to clearance and settlement
[3] [4]. On IT level, STP requires at least the vertical integration of the capital market.
In this context, the trading systems employed by the exchange members face a multitude of
challenges when it comes to the ability to adapt to continuous changes and improvements
implemented both upstream (client connectivity and interface) and downstream (settlement
and clearing).

In this context, the application-programming interface (API) employed within the trading
system of a broker/dealer, or a market access provider, acts as a binding agent among a
variety of applications that compose the system. From that perspective, the manner in which
the API is designed to facilitate the interactions between applications, it determines the
characteristics and the general behavior of the entire trading system.
The architectural design and API design of a trading system are intrinsically connected [5].
There have been various approaches in trading architecture design, along with the appropriate
APIs.

mailto:claudiu.vinte@opteamsys.com

2

One of the earliest approaches was the client-server architecture, employing TCP/IP socket-
based communication between the multiple clients and the server [6] [7]. The corresponding
API consists in a collection of call-forwards (request calls from the clients) and call-backs
(responses or other informative data provided back to the clients by the server). Conceptually,
this communication paradigm can be identified in most of the distributed computing models,
the differences residing in the underlying transfer mechanism. One of the most commonly
used distributed computing model today by both Java and .NET platforms is based on the
concept of remote procedure call (RPC). Component-based architectures such as JavaBeans
are built on the top of this model. RPC attempts to mimic the behavior of a system that runs
in one process. When a remote procedure is invoked, the caller is blocked until the procedure
completes and returns the control to the caller. This synchronized model allows the developer
to view the system as if it runs in one process. Work is performed sequentially, ensuring that
tasks are completed in a predefined order. The synchronized nature of RPC tightly couples
the client (the software making the call) to the server (the software servicing the call), as it is
shown in Figure 1. The client cannot proceed – it is blocked – until the server responds [8].

Application
C

Application
D

RPC
Client/Server

Application
A

Application
E

RPC
Client/Server

RPC
Client/Server

RPC
Client/Server

RPC
Client/Server

Application
B

Fig. 1 – A tightly coupled RPC based architecture

On of the most successful areas of the tightly coupled RPC model has been in building 3-tier,
or n-tier, applications. In this model, a presentation layer (fist tier) communicates using RPC
with business logic on the middle tier (second tier), which accesses date stored on the backed
(third tier). The tightly coupled nature of RPC creates highly interdependent systems, where a
failure on one system has an immediate and debilitating impact on other systems. RPC works
well in many scenarios, but its synchronous, tightly coupled nature is severe handicap in
system-to-system processing where vertical applications are integrated together, as it is the
case with a trading platform, that has to integrate client connectivity components, order
processing, market execution capture, trade generation etc. In system-to-system scenarios, the
lines of communications between vertical systems are many and multidirectional, as Figure 1
illustrates. When there is a new system to be added to the platform that implies a going back,
and let all the other system know about it. When one part of the system goes down,
everything halts. For example, when a client order is posted to the order entry system, it
needs to make a synchronous call to each of the other systems. This cause the order entry
system to block and wait until each system is finished processing the order. Multithreading
and looser RPC mechanisms like CORBA’s one-way call can be employed as options, but
these solutions have their own complexities. Threads are expensive when not used wisely,
and CORBA one-way calls still require application-level error handling for failure conditions.
Furthermore, systems can crash, object interfaces need to be updated and, therefore,
scheduled downtimes need to happen.

3

Summarizing, it is the synchronized, tightly coupled, interdependent nature of RPC systems
that cause entire system to fail as a result of failures in subsystems. When a tightly coupled
nature of RPC is not appropriate, as in system-to-system scenarios, messaging provides an
alternative.
On a different approach, problems with availability of subsystems are not an issue with
message-oriented middleware (MOM). A fundamental concept of messaging is that
communication between applications is intended to be asynchronous. The API design to
connect the applications together is a one-way message that requires no immediate response
from another application. In other words, there is no blocking, or least no indefinite blocking.
Once a message is sent, the messaging client can move on to other tasks; it does not have to
wait for a response. This is the major difference between RPC and asynchronous messaging,
and it is critical to understand the advantages offered by messaging systems.

In an asynchronous messaging trading system, each subsystem (client connectivity lines,
order managing, market ordering lines, market execution capture, trade generation etc.) is
decoupled from the other subsystems, as Figure 2 illustrates.

Message
Server

(Broker)

 JMS
Client

Application
A

 JMS
Client

Application
B

 JMS
Client

Application
C

 JMS
Client

Application
D

 JMS
Client

Application
E

Fig. 2 – JMS provides for a loosely coupled message-oriented architecture

The applications, subsystems communicate through messaging server (message broker), so
that a failure in one does not impede the operation of the others. This aspect is particularly
critical in the case of a trading platform, where is imperiously necessary to offer order entry
availability to the clients, and ensure that the executions results are returned to the investors
as soon as they are captured from the market by the member or intermediary trading system.
In a distributed computing system, partial failure is a fact. One of the subsystems may have
an unpredictable failure or may need to be shut down at some time during its continuous
operation. Geographic dispersion of in-house and partner trading systems can further amplify
a failure situation. In recognition of this, Java Message Service (JMS) provides guaranteed
delivery, which ensures that intended consumers will eventually receive a message, even if
partial failure occurs. Guaranteed delivery uses a store-and-forward mechanism, which means
that the underlying message broker will write the incoming messages out to a persistent store,
it the intended consumers are not currently available, or active, from the message server
perspective. When the receiving applications become available at a later time, the store-and-
forward mechanism will deliver all the messages that the consumers missed while not
connected to the message broker. The guaranteed delivery capability of a MOM sets it apart
from an object request broker (ORB). An ORB or ORB-based middleware enables an
application’s objects to be distributed and shared across heterogeneous networks, but object
persistence, even when this is ability is offered, it increases the complexity of the ORB and

4

makes for an even more accentuated dependency upon the common object libraries to be
distributed and maintained across the systems [9] [10].

2. API requirements within a simulation-trading environment
In real world environment, a trading system has to combine a multitude of requirements,
many of them having puling in different directions and, consequently, and equilibrium of
contraries it is desired to be obtained: it has to be fast, yet flexible and adaptable; responsive,
yet reliable and consistent. In order to achieve such characteristics, technically opposite in
their nature, the architectural design and the API employed for the inter-application
communication have to be carefully tailored to the specific needs. In our case, we have
explored for an appropriate architecture and API suitable for a simulation-trading platform,
within the academic environment. In this context, sheer response time of the system as whole
is not an issue and, therefore, rather than focusing on the inter-application communication
aspects we have opted out to research into the system functionalities and the application-
programming interface that connects everything together. Therefore, the API requirements
within a simulation-trading environment concern the followings:

• the simulation-trading platform should consist of the following systems at minimum:
o trading graphical user interface (GUI);
o order management server (OMS);
o trade generation and portfolio management server (PMS);
o exchange simulation engine (ESE), to act as a market place;
o pseudo-random order generator (PROG), to enable a controlled, and desirably

high, liquidity on the simulation market;
o delayed-data feed (DDF), components to be built around web service clients,

for capturing and disseminating delayed-data supplied by the Bucharest Stock
Exchange (BSE) through the means of web services;

• the architecture for the trading platform has to be one of service-orientation; the
component applications/subsystems need to be clearly defined functionally, and have
to have the functionality exposed in the manner of a service provider;

• the communication layer has to offer support for both point-to-point and publish-and-
subscribe communication models;

• the point-to-point communication model has to offer support for an event-driven
architectural behavior, and for a request/reply type of mechanism;

• the simulation-trading platform has to be reliable when it comes to order clients,
matching results, trades and portfolios handling i.e., in case of subsystems failure,
there should be recovery mechanisms in place;

• the system architecture has to offer great flexibility regarding the possibility of adding
new application/subsystems in the future; the API has to be design in such a way that,
in the eventuality of an extension, the current functionality has not to be affected;

• the communication middleware has to provide support for data persistence and store-
and-forward mechanism for possible assistance in recovery scenarios.

Having the above stated requirements, for a simulation-trading platform that is to be design
from ground up, an API design based on a message-oriented middleware seems to be the
most appropriate approach [11] [12]. We presented in [13] our earlier research upon the
design of a trading system architecture based on a MOM, namely OpenMQ.
In this paper, we present the results of the subsequent level of our research, concerning the
application-programming interface for the architectural trading design previously introduced.

5

3. Designing a service-oriented trading architecture
In the process of designing an API for a trading architecture of a service-orientation, we
departed from the functionalities the systems listed above have to provide within the trading
platform, and the nature of the data that is to be exchanged between them [14]. The trading
API is design based on platform independent Java Message Service (JMS) interface [15] [16].
It exploits all the communication models and the mechanisms provided by JMS, for
supporting the specific functionality of each system, and the way it interacts with another. For
example, when an investor places a new order in the system, it is employed the asynchronous
request/reply mechanism provided by JMS. The trading GUI produces and sends a new order
message, to the destination queue ORDER_REQUEST_QUEUE, and then waits on the reply queue
ORDER_REPLY_QUEUE, for a specified amount of time, to receive an acknowledgement from
the order management server (OMS). The name of the reply queue is sent to the initial
receiver (OMS) through the request message. We have to point out here that the
asynchronous request/reply offered through the JMS interface does not block the requester
processing flow indefinitely, as is the case with a synchronous, RPC-based request/reply, but
for a certain amount of time, specified by the application programmer through the JMS
interface. Once the client order was successfully received and processed by OMS, it is then
flowed to the simulation exchange (ESE) by being sent to the destination queue
CLIENT_ORDER_QUEUE. This point-to-point order sending, from OMS to ESE, is achieved
using the fire-and-forget mechanism, which means that the OMS sends the client order to the
specified destination, and then continues its processing flow, without waiting for any reply
from ESE. This mechanism completely decouples ESE from OMS. However, the client order
status can be captured back by OMS, in a similar asynchronous fashion, by receiving the
messages sent from ESE to the destination queue MARKET_ORDER_QUEUE. The below Figure 3
illustrates these flows, in a normal trading operation scenario.

M essage Broker

ORDER_REQUEST_QUEUE

OM S

ORDER_REPLY_QUEUE

CLIEN T_ORDER_TOPIC

CLIEN T_EXECUTION_TOPIC

CLIENT_ORDER_QUEUE

M ARKET_ORDER_QUEUE

PRO G

M ARKET_EXECUTION_QUEUE

PM S

Trading GUI

ESE

PR ICE_TOPIC

DDF

Fig. 3 – Client order and market execution flows in normal operation scenario

The dashed lines depict the reply message flow. If the client order is matched on the
simulation market, then ESE generates an execution message, which is sent asynchronously

6

to the destination MARKET_EXECUTION_QUEUE.
OMS listens to both destinations MARKET_ORDER_QUEUE and MARKET_EXECUTION_QUEUE,
which are fed asynchronously by ESE, and then publishes the order status updates and the
market generated executions to the CLIENT_ORDER_TOPIC and CLIENT_EXECUTION_TOPIC,
respectively. The applications that subscribe to these topics, trading GUIs and portfolio
management server (PMS), will have to filter the published messages in order to process only
the messages intended to them. In particular, PMS will subscribe for all client order updates
and market executions, in order to generate the corresponding trades and maintain client
portfolios. It is worth mentioning here, that PMS subscriptions to afore mentioned topics are
realized in a durable way. That allows PMS to receive all the messages published to those
topics, regardless of it maintaining continuously an active connection to the message broker.
On a different flow, the delayed-data feed (DDF) publishes, for the applications interested in
it, real market data updates captured from Bucharest Stock Exchange (BSE), via a collection
of web service clients. Figure 3 shows the pseudo-random order generator (PROG) as
subscriber to the PRICE_TOPIC. Based on the price updates received from this topic, PROG is
designed to generate new orders and send them to ESE, for enabling a controlled, and
desirably high, liquidity on the simulation market.
The trading GUI is offered as a web browser accessible Java applet and, consequently, its
communication with the messaging platform is achieved through a Java servlet responsible
with the HTTP tunneling. The intention and the format of this paper do not afford us the
necessary space to go into all the details of this message-oriented trading API. For further
references, can be consulted our website: www.iem.ase.ro. There are numerous message
flows, which cover various levels of communication between applications, for supporting
multiple layers of system business logic. For example, the initialization phase of the trading
GUI, may involve the acquirement of the list of tradable financial instruments for the given
trading day. Trading GUI achieves the list from OMS, through the asynchronous
request/reply mechanism supplied by JMS. GUI sends a request to the destination
INSTRUMENT_LIST_REQUEST_QUEUE and then waits for OMS reply on destination
INSTRUMENT_LIST_REPLY_QUEUE, as Figure 4 shows.

Message Broker

LOG_IN_REQUEST_QUEUE

OMS

LOG_IN_REPLY_QUEUE

PRICE_TOPIC

INSTRUMENT_LIST_REQUEST_QUEUE

Trading GUI

DDF

INSTRUMENT_LIST_REPLY_QUEUE

LOG_OUT_REQUEST_QUEUE

LOG_OUT_REPLY_QUEUE

Fig. 4 – Logging in and out, along with GUI initialization flows

http://www.iem.ase.ro/

7

Employing the same JMS communication model, the logging in and logging out procedures
are achieved from the trading GUI with respect to the corresponding involvement of OMS.
The trading GUI may also subscribe to the PRICE_TOPIC, if the user wants to consult the
price data available from the market, along with daily volume, number of transactions etc. for
a specified symbol.
All the messages flowed through the trading system are marked to be persistent and,
therefore, to be stored by the message broker until the intended destination acknowledge their
consumption. Once a persistent message is received and acknowledged by the messaging
platform, its delivery to the intended destination is guaranteed. The message server stores out
on disk every message marked as persistent, providing a guaranteed delivery of the message
to the destination even in the case of server failure.
In line with JMS requirements, the messages are to be autonomous and self-contained
entities. Each message of the trading API contains only the relevant data for a potential
consumer to process it. A message does not carry imbedded instructions regarding the way in
which it has to be process by the consumer. However, a JMS message may have defined
certain application-specific properties, in the form of a list of pairs:
<property name><property value>.
The application-specific properties may be used for message filtering, event-driven
processing, or for letting the consumer know about the nature of the message and, therefore,
the possible ways of processing it. Departing from Message interface, JMS defines five more
types of messages that can be handled by the JMS message server, namely: TextMessage,
ObjectMessage, BytesMessage, StreamMessage, and MapMessage [17].
The Message interfaces are defined according to the kind of payload they are designed to
carry. In some cases, Message types were included in JMS to support legacy payloads that
are common and useful, which is the case with the TextMessage, BytesMessage, and
StreamMessage message types. In other cases, the Message types were defined to facilitate
emerging needs; for example ObjectMessage can transport serializable Java objects.
Being a new design from the ground up, our current implementation of the proposed trading
API makes use of the ObjectMessage interface, since the whole trading system is based on
the Java platform. However, it may be easily converted to a more open approach, which
would employ the MapMessage interface. This interface allows for defining the payload as list
of pairs <key><value>. This approach would open the road for a self-defined API: each data
field in the system has a uniquely assigned identification label (key). Hence, each message
payload may be composed of a subset of the generically defined collection of available date
fields in the system. Such an implementation would require additional layers in the
applications, for accomplishing the necessary marshaling and de-marshaling activities, in
order to convert the data encapsulated in a Java object to the MapMessage type of payload,
and vice versa.

4. Messaging as an agile and reliable approach for a trading API
Benefiting from the guaranteed message delivery supported by the JMS server, along with the
store-and-forward mechanism offered to the durable subscribers, the trading API that we
propose does not need to address aspects related to data persistence in each subsystem of the
trading platform. In fact, the order management server (OMS) and the portfolio management
server (PMS) are the only subsystems that are designed to interact with a database. It is the
business logic of the trading platform, which commands for a persistent storage of the order
books, market executions and client portfolios. In addition to that, the trading API has to
provide reliable procedures for system recovery in case of a partial failure. For example, by
subscribing in a durable manner to CLIENT_ORDER_TOPIC and CLIENT_EXECUTION_TOPIC,
PMS ensures that if it goes down unexpectedly, all the messages published to those topics,

8

while it has lost the connection to the message server, will be delivered to it once the
connection is reestablished. Similarly, the message broker will store the client order
messages, placed by OMS onto the CLIENT_ORDER_QUEUE, until the exchange simulation
engine (ESE) consumes them. However, there are restart/recovery procedures that need to be
addressed programmatically, and the trading API has to support them. For example, a trading
GUI may normally connect to and disconnect from the trading system for multiple times
during a trading session. The investor would need to have recovered and shown in the GUI
the entire trading activity that he or she has done during the current trading day. In order to
achieve this desiderate transparently to the user, the trading GUI has to actively request from
OMS the list of the orders that the investor has placed into the order book during the current
trading session, and the list of the market executions associated to the possibly matched
orders. These flows make use of the asynchronous request/reply mechanism, as Figure 5
illustrates.

M essage Broker

ORDER_LIST_REQUEST_QUEUE

OM S

ORDER_LIST_REPLY_QUEUE

PORTFOLIO_LIST_REQUEST_QUEUE

PM S

Trading GUI

EXECUTION_LIST_REQUEST_QUEUE

EXECUTION_LIST_REPLY_QUEUE

ESE
PORTFOLIO_LIST_REPLY_QUEUE

TRADE_LIST_REQUEST_QUEUE

TRADE_LIST_REQUEST_QUEUE

Fig. 5 – Flows concerning trading GUI and ESE restart/recovery scenarios

In addition to procedures described above, there may be requests from the investor for
consulting his or her history of completed transactions, and the current situation of the
portfolio of owned financial instruments.
In case of an ESE failure, being a simulation-trading environment, the recovery procedure
implies an active request to the OMS for all the client orders sent to the market during the
current trading session, and which are not totally executed. The exchange simulation engine
is designed to be very responsive and, in order to achieve that, it keeps all the data in
memory, and does not waste time in persisting any data on disk.
Summarizing, messaging is a very effective means of building the abstraction layer within
SOA, needed to fully abstract a business service (functionality) from its underlying

9

implementation. Through business messaging, the business service (say, the order booking)
does not need to be concerned about where the corresponding implementation service is,
what language it is written in, what platform it is deployed in, or even the name of the
implementation service. Messaging also provides the scalability needed within a SOA
environment, and also provides a robust level of monitoring and control of requests coming
into and out of an enterprise service bus (ESB). For example, in our implementation of the
trading API, it was not important how many OMS instances might be brought up and kept
running at the same time. Scalability, in the context of messaging systems, is achieved by
introducing multiple message receivers that can process different messages concurrently. As
messages stack up waiting to be processed, the number of messages in the queue, or what is
otherwise known as the queue depth, starts to increase. As the queue depth increases (as
client order requests may accumulate in the ORDER_REQUEST_QUEUE, for example) system
response time increases and throughput decreases. One way to increase the scalability of a
system is to add multiple message listeners to the queue to process more requests
concurrently. This can be easily done dynamically, if the API is designed to use message
queues that handle homogenous type of messages. Consequently, in the design of our trading
API we carefully ensured that each specified destination handles a particular type of payload.
The use of messaging, as part of the overall service-oriented trading solution, allows for
greater architectural flexibility and agility. These qualities are achieved through the use of
abstraction and decoupling. With messaging, subsystems, components, and even services can
be abstracted to the point where they can be replaced with little or no knowledge by the client
components. Architectural agility is the ability to respond quickly to constantly changing
environment. By using messaging to abstract and decouple components, the trading API that
we have proposed in this paper, can quickly respond to changes in software, hardware and
even business logic. Our intention was to design a trading API, which can be adapted with
ease to the academic needs for future researches on trading strategies, design of trading
algorithms, and equity markets analysis tools.

5. Conclusions
As part of our undergoing research, directed to the overall design and implementation of a
simulation-trading platform within an academic, the trading API proposed in this paper
intrinsically determines the characteristics of the system as a whole.
With the presented API, the architecture of the trading system that we intend to build within
the ASETS project (an abbreviation from the Romanian version of the Trading System of The
Bucharest Academy of Economic Studies), is currently contoured. In a simulation-trading
environment, human agents compete on resources created by computer algorithms, within a
scenario-driven market place. The components that create these scenarios have to sense the
trading patterns of the human investors, and act accordingly. Designing a trading API based
on a message-oriented middleware provides the optimum balance, with regards to the overall
system response, availability, reliability, and flexibility in accepting future changes and
extensions.
The ability to swap out one system for another, change a technology platform, or even change
a vendor solution without affecting the client applications can be achieved through
abstraction using messaging. Through messaging, the message producer, or client component
(from the perspective of the message server), does not need to know which programming
language or platform the receiving component is written in, where the component or service
is located, what the component or service implementation name is, or even the protocol used
to access that component or service (as we have seen with the HTTP tunneling, for web
accessible trading GUI). It is by means of these levels of abstraction that enable for replacing
the components and subsystems more easily, thereby increasing architectural agility.

10

References:
[1] McIntyre Hal (editor) - How the U.S. Securities Industry Works - Updated and Expanded

in 2004 - The Summit Group Press, New York, 2004
[2] Schwartz A. Robert, Francioni Reto - Equity Markets in Action (The Fundamentals of

Liquidity, Market Structure & Trading) - John Wiley & Sons, Inc., 2004
[3] McIntyre Hal (editor) – Straight Through Processing - The Summit Group Publishing,

Inc., New York, 2004
[4] Harris Larry – Trading and Exchanges – Oxford University Press, Oxford, 2003
[5] Vinţe Claudiu - The Informatics of the Equity Markets - A Collaborative Approach – in

Informatica Economică vol. 13, no. 2/2009, INFOREC, Bucharest, 2009
[6] Stevens W. Richard - UNIX Network Programming – Vol. 1, Networking APIs: Sockets

and XTI, Second Edition, Prentice Hall, 1998
[7] Tanenbaum S. Andrew - Computer Networks - Fourth Edition, Vrije Universiteit

Amsterdam, The Netherlands, Pearson Education Inc., Prentice Hall PTR, New Jersey,
2003

[8] Tanenbaum S. Andrew, Maarten van Steen - Distributed Systems - Principles and
Paradigm - Vrije Universiteit Amsterdam, The Netherlands, Prentice Hall, New Jersey,
2002

[9] Vinţe Claudiu - Aspecte ale Proiectării unui Order Request Broker (ORB) - Partea I - in
Informatica Economică, Vol. V, No. 2 (18)/2001, INFOREC, Bucharest, 2001

[10] Vinţe Claudiu - Aspecte ale Proiectării unui Order Request Broker (ORB) - Partea a II-
a - in Informatica Economică, Vol. V, No. 3 (19)/2001, INFOREC, Bucharest, 2001

[11] Kerievsky Joshua - Refactoring to Patterns - Addison-Wesley, Boston, 2005
[12] Mattson G. Timothy, Sanders A. Beverly, Massingill L. Berna - Patterns for Parallel

Programming - Addison-Wesley, Boston, 2005
[13] Vinţe Claudiu - Upon a Trading System Architecture based on OpenMQ Middleware –

in Open Source Scientific Journal, Vol.1, no.1, 2009 - http://www.opensourcejournal.ro/
[14] Erl Thomas (with additional contributors) - SOA Design Patterns – Prentice Hall by

SOA Systems Inc., New Jersey, 2009
[15] Sun Microsystems, Inc. – Java Message Service - http://java.sun.com/products/jms/
[16] Sun Microsystems, Inc. - Open Message Queue: Open Source Java Message Service

(JMS) - https://mq.dev.java.net/
[17] Richards Mark, Monson-Haefel Richard, Chappell A. David - Java Message Service

(Second Edition) – O’Reilly Media Inc., Sebastopol, California, 2009

Claudiu VINŢE has over twelve years experience in the design and
implementation of software for equity trading systems and automatic
trade processing. He is currently CEO and co-founder of Opteamsys
Solutions, a software provider in the field of securities trading
technology and equity markets analysis tools. Previously he was for
over six years with Goldman Sachs in Tokyo, Japan, as Senior Analyst
Developer in the Trading Technology Department. Claudiu graduated
in 1994 The Faculty of Cybernetics, Statistics and Economic
Informatics, Department of Economic Informatics, within The
Bucharest Academy of Economic Studies. He holds a PhD in

Economics from The Bucharest Academy of Economic Studies. Claudiu has also given
lectures and coordinated the course and seminars upon The Informatics of the Equity Markets,
within the Master’s program organized by the Department of Economic Informatics. His
domains of interest and research include combinatorial algorithms, middleware components,
and web technologies for equity markets analysis.

https://mq.dev.java.net/
http://java.sun.com/products/jms/
http://www.opensourcejournal.ro/

