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In  this  paper,  we  introduce  the  premises  for  a  trading  system application-programming 
interface (API) based on a message-oriented middleware (MOM), and present the results of  
our research regarding the design and the implementation of a simulation-trading system 
employing  a service-oriented  architecture  (SOA)  and messaging.  Our  research  has  been  
conducted  with  the  aim  of  creating  a  simulation-trading  platform,  within  the  academic  
environment,  that  will  provide  both  the  foundation  for  future  experiments  with  trading  
systems  architectures,  components,  APIs,  and  the  framework  for  research  on  trading 
strategies, trading algorithm design, and equity markets analysis tools.
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1. A brief introduction to trading APIs
The information technology (IT) has made exchanges far more efficient in handling heavy 
volume in a timely fashion and at reasonable cost. Furthermore, IT enables geographically 
dispersed marketplaces to be more effectively consolidated [1] [2]. The strategic advantage of 
an electronic platform can be summarized in form of the following beneficial effects:

• support for an efficient vertical integration (from trading to settlement);
• supply the premises for a national and regional strategy (horizontal integration);
• offers the fundaments for a decentralized market access for participants;
• continuous or extended trading hours;
• better overall services for members (availability, functionality, support);
• means for an effective centralized market surveillance from the national regulatory 

bodies.

In nowadays trading environment, a market center strives to offer a fast and reliable access, 
from anywhere and anytime, aiming to achieve a fully integrated straight-through processing 
(STP). The STP desiderate means that,  once an order is placed through the order routing 
channel, it follows a fully integrated online procedure, passing seamlessly from its entrance 
on the order book, to matching on the exchange, and on through to clearance and settlement 
[3] [4]. On IT level, STP requires at least the vertical integration of the capital market.
In this context, the trading systems employed by the exchange members face a multitude of 
challenges when it comes to the ability to adapt to continuous changes and improvements 
implemented both  upstream (client connectivity and interface) and  downstream (settlement 
and clearing). 

In this context, the application-programming interface (API) employed within the trading 
system of a broker/dealer,  or  a market  access  provider,  acts  as a binding agent among a 
variety of applications that compose the system. From that perspective, the manner in which 
the  API  is  designed  to  facilitate  the  interactions  between  applications,  it  determines  the 
characteristics and the general behavior of the entire trading system. 
The architectural design and API design of a trading system are intrinsically connected [5]. 
There have been various approaches in trading architecture design, along with the appropriate 
APIs.
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One of the earliest approaches was the client-server architecture, employing TCP/IP socket-
based communication between the multiple clients and the server [6] [7]. The corresponding 
API consists in a collection of  call-forwards (request calls from the clients) and  call-backs 
(responses or other informative data provided back to the clients by the server). Conceptually, 
this communication paradigm can be identified in most of the distributed computing models, 
the differences residing in the underlying transfer mechanism. One of the most commonly 
used distributed computing model today by both Java and .NET platforms is based on the 
concept of remote procedure call (RPC). Component-based architectures such as JavaBeans 
are built on the top of this model. RPC attempts to mimic the behavior of a system that runs 
in one process. When a remote procedure is invoked, the caller is blocked until the procedure 
completes and returns the control to the caller. This synchronized model allows the developer 
to view the system as if it runs in one process. Work is performed sequentially, ensuring that 
tasks are completed in a predefined order. The synchronized nature of RPC tightly couples 
the client (the software making the call) to the server (the software servicing the call), as it is 
shown in Figure 1. The client cannot proceed – it is blocked – until the server responds [8].
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Fig. 1 – A tightly coupled RPC based architecture

On of the most successful areas of the tightly coupled RPC model has been in building 3-tier, 
or n-tier, applications. In this model, a presentation layer (fist tier) communicates using RPC 
with business logic on the middle tier (second tier), which accesses date stored on the backed 
(third tier). The tightly coupled nature of RPC creates highly interdependent systems, where a 
failure on one system has an immediate and debilitating impact on other systems. RPC works 
well in many scenarios, but its synchronous,  tightly coupled nature is severe handicap in 
system-to-system processing where vertical applications are integrated together, as it is the 
case  with  a  trading  platform,  that  has  to  integrate  client  connectivity  components,  order 
processing, market execution capture, trade generation etc. In system-to-system scenarios, the 
lines of communications between vertical systems are many and multidirectional, as Figure 1 
illustrates. When there is a new system to be added to the platform that implies a going back, 
and  let  all  the  other  system  know  about  it.  When  one  part  of  the  system  goes  down, 
everything halts.  For example,  when a client order is posted to the order entry system, it 
needs to make a synchronous call to each of the other systems. This cause the order entry 
system to block and wait until each system is finished processing the order. Multithreading 
and looser RPC mechanisms like CORBA’s one-way call can be employed as options, but 
these solutions have their own complexities. Threads are expensive when not used wisely, 
and CORBA one-way calls still require application-level error handling for failure conditions. 
Furthermore,  systems  can  crash,  object  interfaces  need  to  be  updated  and,  therefore, 
scheduled downtimes need to happen. 
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Summarizing, it is the synchronized, tightly coupled, interdependent nature of RPC systems 
that cause entire system to fail as a result of failures in subsystems. When a tightly coupled 
nature of RPC is not appropriate, as in system-to-system scenarios, messaging provides an 
alternative. 
On a  different  approach,  problems  with  availability  of  subsystems  are  not  an issue with 
message-oriented  middleware (MOM).  A  fundamental  concept  of  messaging  is  that 
communication  between applications  is  intended to  be  asynchronous.  The  API design  to 
connect the applications together is a one-way message that requires no immediate response 
from another application. In other words, there is no blocking, or least no indefinite blocking. 
Once a message is sent, the messaging client can move on to other tasks; it does not have to 
wait for a response. This is the major difference between RPC and asynchronous messaging, 
and it is critical to understand the advantages offered by messaging systems. 

In an asynchronous messaging trading system, each subsystem (client connectivity lines, 
order managing,  market ordering lines, market execution capture,  trade generation etc.)  is 
decoupled from the other subsystems, as Figure 2 illustrates.
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Fig. 2 – JMS provides for a loosely coupled message-oriented architecture

The applications, subsystems communicate through messaging server (message broker), so 
that a failure in one does not impede the operation of the others. This aspect is particularly 
critical in the case of a trading platform, where is imperiously necessary to offer order entry 
availability to the clients, and ensure that the executions results are returned to the investors 
as soon as they are captured from the market by the member or intermediary trading system. 
In a distributed computing system, partial failure is a fact. One of the subsystems may have 
an unpredictable failure or may need to be shut down at some time during its continuous 
operation. Geographic dispersion of in-house and partner trading systems can further amplify 
a failure situation. In recognition of this, Java Message Service (JMS) provides guaranteed 
delivery, which ensures that intended consumers will eventually receive a message, even if 
partial failure occurs. Guaranteed delivery uses a store-and-forward mechanism, which means 
that the underlying message broker will write the incoming messages out to a persistent store, 
it  the intended consumers  are  not currently available,  or active,  from the message server 
perspective. When the receiving applications become available at a later time, the store-and-
forward  mechanism  will  deliver  all  the  messages  that  the  consumers  missed  while  not 
connected to the message broker. The guaranteed delivery capability of a MOM sets it apart 
from  an  object  request  broker  (ORB).  An  ORB  or  ORB-based  middleware  enables  an 
application’s objects to be distributed and shared across heterogeneous networks, but object 
persistence, even when this is ability is offered, it increases the complexity of the ORB and 
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makes for an even more accentuated dependency upon the common object libraries to be 
distributed and maintained across the systems [9] [10].

2. API requirements within a simulation-trading environment
In real  world environment,  a trading system has to combine a multitude of requirements, 
many of them having puling in different directions and, consequently,  and equilibrium of 
contraries it is desired to be obtained: it has to be fast, yet flexible and adaptable; responsive, 
yet reliable and consistent. In order to achieve such characteristics, technically opposite in 
their  nature,  the  architectural  design  and  the  API  employed  for  the  inter-application 
communication  have  to  be carefully  tailored  to  the specific  needs.  In  our  case,  we have 
explored for an appropriate architecture and API suitable for a simulation-trading platform, 
within the academic environment. In this context, sheer response time of the system as whole 
is not an issue and, therefore, rather than focusing on the inter-application communication 
aspects we have opted out to research into the system functionalities and the application- 
programming interface that connects everything together. Therefore, the API requirements 
within a simulation-trading environment concern the followings:

• the simulation-trading platform should consist of the following systems at minimum: 
o trading graphical user interface (GUI);
o order management server (OMS);
o trade generation and portfolio management server (PMS);
o exchange simulation engine (ESE), to act as a market place;
o pseudo-random order generator (PROG), to enable a controlled, and desirably 

high, liquidity on the simulation market;
o delayed-data feed (DDF), components to be built around web service clients, 

for capturing and disseminating delayed-data supplied by the Bucharest Stock 
Exchange (BSE) through the means of web services; 

• the  architecture  for  the  trading  platform has  to  be  one  of  service-orientation;  the 
component applications/subsystems need to be clearly defined functionally, and have 
to have the functionality exposed in the manner of a service provider; 

• the communication layer has to offer support for both point-to-point and publish-and-
subscribe communication models;

• the  point-to-point communication  model  has  to  offer  support  for  an  event-driven 
architectural behavior, and for a request/reply type of mechanism;

• the simulation-trading  platform has  to  be reliable  when it  comes  to  order  clients, 
matching results,  trades and portfolios handling i.e.,  in case of subsystems failure, 
there should be recovery mechanisms in place;

• the system architecture has to offer great flexibility regarding the possibility of adding 
new application/subsystems in the future; the API has to be design in such a way that, 
in the eventuality of an extension, the current functionality has not to be affected;

• the communication middleware has to provide support for data persistence and store-
and-forward mechanism for possible assistance in recovery scenarios.

Having the above stated requirements, for a simulation-trading platform that is to be design 
from ground up, an API design based on a message-oriented middleware seems to be the 
most  appropriate  approach [11]  [12].  We presented in [13] our earlier  research upon the 
design of a trading system architecture based on a MOM, namely OpenMQ. 
In this paper, we present the results of the subsequent level of our research, concerning the 
application-programming interface for the architectural trading design previously introduced.
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3. Designing a service-oriented trading architecture
In the process of designing an API for a trading architecture of a service-orientation,  we 
departed from the functionalities the systems listed above have to provide within the trading 
platform, and the nature of the data that is to be exchanged between them [14]. The trading 
API is design based on platform independent Java Message Service (JMS) interface [15] [16]. 
It  exploits  all  the  communication  models  and  the  mechanisms  provided  by  JMS,  for 
supporting the specific functionality of each system, and the way it interacts with another. For 
example, when an investor places a new order in the system, it is employed the asynchronous 
request/reply mechanism provided by JMS. The trading GUI produces and sends a new order 
message, to the destination queue ORDER_REQUEST_QUEUE, and then waits on the reply queue 
ORDER_REPLY_QUEUE, for a specified amount of time, to receive an acknowledgement from 
the order  management  server  (OMS).  The  name of  the  reply queue  is  sent  to  the initial 
receiver  (OMS)  through  the  request  message.  We  have  to  point  out  here  that  the 
asynchronous request/reply offered through the JMS interface does not block the requester 
processing flow indefinitely, as is the case with a synchronous, RPC-based request/reply, but 
for  a  certain  amount  of  time,  specified  by the  application  programmer  through the  JMS 
interface. Once the client order was successfully received and processed by OMS, it is then 
flowed  to  the  simulation  exchange  (ESE)  by  being  sent  to  the  destination  queue 
CLIENT_ORDER_QUEUE.  This  point-to-point order  sending,  from OMS to ESE,  is  achieved 
using the fire-and-forget mechanism, which means that the OMS sends the client order to the 
specified destination, and then continues its processing flow, without waiting for any reply 
from ESE. This mechanism completely decouples ESE from OMS. However, the client order 
status can be captured back by OMS, in a similar asynchronous fashion, by receiving the 
messages sent from ESE to the destination queue MARKET_ORDER_QUEUE. The below Figure 3 
illustrates these flows, in a normal trading operation scenario.
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Fig. 3 – Client order and market execution flows in normal operation scenario 

The  dashed  lines  depict  the  reply  message  flow.  If  the  client  order  is  matched  on  the 
simulation market, then ESE generates an execution message, which is sent asynchronously 
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to the destination MARKET_EXECUTION_QUEUE.
OMS  listens  to  both  destinations  MARKET_ORDER_QUEUE and  MARKET_EXECUTION_QUEUE, 
which are fed asynchronously by ESE, and then publishes the order status updates and the 
market  generated executions  to the  CLIENT_ORDER_TOPIC and  CLIENT_EXECUTION_TOPIC, 
respectively.  The  applications  that  subscribe  to  these  topics,  trading  GUIs  and  portfolio 
management server (PMS), will have to filter the published messages in order to process only 
the messages intended to them. In particular, PMS will subscribe for all client order updates 
and market  executions,  in  order to  generate  the corresponding trades  and maintain  client 
portfolios. It is worth mentioning here, that PMS subscriptions to afore mentioned topics are 
realized in a  durable way. That allows PMS to receive all the messages published to those 
topics, regardless of it maintaining continuously an active connection to the message broker.
On a different flow, the delayed-data feed (DDF) publishes, for the applications interested in 
it, real market data updates captured from Bucharest Stock Exchange (BSE), via a collection 
of  web  service  clients.  Figure  3  shows  the  pseudo-random  order  generator  (PROG)  as 
subscriber to the PRICE_TOPIC. Based on the price updates received from this topic, PROG is 
designed  to  generate  new orders  and  send  them to  ESE,  for  enabling  a  controlled,  and 
desirably high, liquidity on the simulation market.
The trading GUI is offered as a web browser accessible Java applet and, consequently, its 
communication with the messaging platform is achieved through a Java servlet responsible 
with the HTTP tunneling. The intention and the format of this paper do not afford us the 
necessary space to go into all the details of this message-oriented trading API. For further 
references,  can  be  consulted  our  website:  www.iem.ase.ro.  There  are  numerous  message 
flows,  which cover various levels  of communication between applications,  for supporting 
multiple layers of system business logic. For example, the initialization phase of the trading 
GUI, may involve the acquirement of the list of tradable financial instruments for the given 
trading  day.  Trading  GUI  achieves  the  list  from  OMS,  through  the  asynchronous 
request/reply  mechanism  supplied  by  JMS.  GUI  sends  a  request  to  the  destination 
INSTRUMENT_LIST_REQUEST_QUEUE and  then  waits  for  OMS  reply  on  destination 
INSTRUMENT_LIST_REPLY_QUEUE, as Figure 4 shows.
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Employing the same JMS communication model, the logging in and logging out procedures 
are achieved from the trading GUI with respect to the corresponding involvement of OMS. 
The trading GUI may also subscribe to the  PRICE_TOPIC, if the user wants to consult the 
price data available from the market, along with daily volume, number of transactions etc. for 
a specified symbol. 
All  the  messages  flowed  through  the  trading  system  are  marked  to  be  persistent  and, 
therefore, to be stored by the message broker until the intended destination acknowledge their 
consumption.  Once a persistent message is  received and acknowledged by the messaging 
platform, its delivery to the intended destination is guaranteed. The message server stores out 
on disk every message marked as persistent, providing a guaranteed delivery of the message 
to the destination even in the case of server failure. 
In  line  with  JMS  requirements,  the  messages  are  to  be  autonomous  and  self-contained 
entities.  Each message  of  the trading API contains  only the relevant  data  for  a  potential 
consumer to process it. A message does not carry imbedded instructions regarding the way in 
which it has to be process by the consumer. However, a JMS message may have defined 
certain application-specific properties, in the form of a list of pairs:
<property name><property value>.
The  application-specific  properties  may  be  used  for  message  filtering,  event-driven 
processing, or for letting the consumer know about the nature of the message and, therefore, 
the possible ways of processing it. Departing from Message interface, JMS defines five more 
types of messages that can be handled by the JMS message server, namely:  TextMessage, 
ObjectMessage, BytesMessage, StreamMessage, and  MapMessage [17]. 
The  Message interfaces are defined according to the kind of payload they are designed to 
carry. In some cases,  Message types were included in JMS to support legacy payloads that 
are  common  and  useful,  which  is  the  case  with  the  TextMessage,  BytesMessage,  and 
StreamMessage message types. In other cases, the Message types were defined to facilitate 
emerging needs; for example ObjectMessage can transport serializable Java objects. 
Being a new design from the ground up, our current implementation of the proposed trading 
API makes use of the ObjectMessage interface, since the whole trading system is based on 
the Java platform.  However, it  may be easily converted to a more open approach,  which 
would employ the MapMessage interface. This interface allows for defining the payload as list 
of pairs <key><value>. This approach would open the road for a self-defined API: each data 
field in the system has a uniquely assigned identification label (key). Hence, each message 
payload may be composed of a subset of the generically defined collection of available date 
fields  in  the  system.  Such  an  implementation  would  require  additional  layers  in  the 
applications,  for accomplishing the necessary  marshaling and  de-marshaling activities,  in 
order to convert the data encapsulated in a Java object to the  MapMessage type of payload, 
and vice versa.

4. Messaging as an agile and reliable approach for a trading API
Benefiting from the guaranteed message delivery supported by the JMS server, along with the 
store-and-forward mechanism offered to the durable  subscribers,  the trading API that  we 
propose does not need to address aspects related to data persistence in each subsystem of the 
trading platform. In fact, the order management server (OMS) and the portfolio management 
server (PMS) are the only subsystems that are designed to interact with a database. It is the 
business logic of the trading platform, which commands for a persistent storage of the order 
books, market executions and client portfolios. In addition to that,  the trading API has to 
provide reliable procedures for system recovery in case of a partial failure. For example, by 
subscribing in a durable manner to  CLIENT_ORDER_TOPIC and  CLIENT_EXECUTION_TOPIC, 
PMS ensures that if it goes down unexpectedly, all the messages published to those topics, 
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while  it  has  lost  the  connection  to  the  message  server,  will  be  delivered  to  it  once  the 
connection  is  reestablished.  Similarly,  the  message  broker  will  store  the  client  order 
messages,  placed  by OMS onto the  CLIENT_ORDER_QUEUE,  until  the  exchange simulation 
engine (ESE) consumes them. However, there are restart/recovery procedures that need to be 
addressed programmatically, and the trading API has to support them. For example, a trading 
GUI may normally connect to and disconnect from the trading system for multiple  times 
during a trading session. The investor would need to have recovered and shown in the GUI 
the entire trading activity that he or she has done during the current trading day. In order to 
achieve this desiderate transparently to the user, the trading GUI has to actively request from 
OMS the list of the orders that the investor has placed into the order book during the current 
trading session,  and the list  of  the market  executions  associated  to the  possibly matched 
orders.  These flows make use of the asynchronous request/reply mechanism,  as Figure 5 
illustrates.
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Fig. 5 – Flows concerning trading GUI and ESE restart/recovery scenarios

In  addition  to  procedures  described  above,  there  may  be  requests  from the  investor  for 
consulting  his  or  her  history  of  completed  transactions,  and  the  current  situation  of  the 
portfolio of owned financial instruments.
In case of an ESE failure, being a simulation-trading environment, the recovery procedure 
implies an active request to the OMS for all the client orders sent to the market during the 
current trading session, and which are not totally executed. The exchange simulation engine 
is  designed to  be  very  responsive  and,  in  order  to  achieve  that,  it  keeps  all  the  data  in 
memory, and does not waste time in persisting any data on disk.
Summarizing, messaging is a very effective means of building the abstraction layer within 
SOA,  needed  to  fully  abstract  a  business  service  (functionality)  from  its  underlying 
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implementation. Through business messaging, the business service (say, the order booking) 
does not need to be concerned about where the corresponding implementation service is, 
what  language  it  is  written  in,  what  platform it  is  deployed  in,  or  even the name of  the 
implementation  service.  Messaging  also  provides  the  scalability  needed  within  a  SOA 
environment, and also provides a robust level of monitoring and control of requests coming 
into and out of an enterprise service bus (ESB). For example, in our implementation of the 
trading API, it was not important how many OMS instances might be brought up and kept 
running at the same time. Scalability, in the context of messaging systems, is achieved by 
introducing multiple message receivers that can process different messages concurrently. As 
messages stack up waiting to be processed, the number of messages in the queue, or what is 
otherwise known as the  queue depth,  starts  to increase.  As the queue depth increases (as 
client  order requests may accumulate  in the  ORDER_REQUEST_QUEUE,  for example)  system 
response time increases and throughput decreases. One way to increase the scalability of a 
system  is  to  add  multiple  message  listeners  to  the  queue  to  process  more  requests 
concurrently.  This can be easily done dynamically,  if the API is designed to use message 
queues that handle homogenous type of messages. Consequently, in the design of our trading 
API we carefully ensured that each specified destination handles a particular type of payload.
The use of messaging,  as part  of the overall  service-oriented trading solution,  allows for 
greater architectural flexibility and agility. These qualities are achieved through the use of 
abstraction and decoupling. With messaging, subsystems, components, and even services can 
be abstracted to the point where they can be replaced with little or no knowledge by the client 
components.  Architectural  agility is the ability to respond quickly to constantly changing 
environment. By using messaging to abstract and decouple components, the trading API that 
we have proposed in this paper, can quickly respond to changes in software, hardware and 
even business logic. Our intention was to design a trading API, which can be adapted with 
ease  to  the  academic  needs  for  future  researches  on  trading  strategies,  design  of  trading 
algorithms, and equity markets analysis tools.

5. Conclusions
As part of our undergoing research, directed to the overall design and implementation of a 
simulation-trading  platform  within  an  academic,  the  trading  API  proposed  in  this  paper 
intrinsically determines the characteristics of the system as a whole. 
With the presented API, the architecture of the trading system that we intend to build within 
the ASETS project (an abbreviation from the Romanian version of the Trading System of The 
Bucharest  Academy of Economic Studies), is currently contoured.  In a simulation-trading 
environment, human agents compete on resources created by computer algorithms, within a 
scenario-driven market place. The components that create these scenarios have to  sense the 
trading patterns of the human investors, and act accordingly. Designing a trading API based 
on a message-oriented middleware provides the optimum balance, with regards to the overall 
system  response,  availability,  reliability,  and  flexibility  in  accepting  future  changes  and 
extensions. 
The ability to swap out one system for another, change a technology platform, or even change 
a  vendor  solution  without  affecting  the  client  applications  can  be  achieved  through 
abstraction using messaging. Through messaging, the message producer, or client component 
(from the perspective of the message server), does not need to know which programming 
language or platform the receiving component is written in, where the component or service 
is located, what the component or service implementation name is, or even the protocol used 
to access that  component or service (as we have seen with the HTTP tunneling,  for web 
accessible trading GUI). It is by means of these levels of abstraction that enable for replacing 
the components and subsystems more easily, thereby increasing architectural agility.
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