
Informatica Economică vol. 13, no. 2/2009

76

The Informatics of the Equity Markets - A Collaborative Approach

Claudiu VINŢE
Opteamsys Solutions, Bucharest, Romania

claudiu.vinte@opteamsys.com

This paper aims to provide a high-level overview upon the information technology that sup-
ports the electronic transactions performed on the equity markets. It is meant to offer a suc-
cinct introduction to the various technologies tailored to tackle the data transfer between the
participants on an equity market, the architectural approaches regarding trading system de-
sign, and the communication in a collaborative distributed computing environment. Our in-
tention here is not to provide solutions, or to propose definitive designs, merely to scratch the
surface of this vast domain, and open the path for subsequent researches.
Keywords: securities exchange, stock order flow, trading system architecture, distributed
computing, middleware, collaborative system, order-matching algorithm

The role of an equity market and its partic-
ipants

From an overall economic and social perspective,
the capital flows among the economic agents at
multiple layers. In this paper, we will focus on
the value chain of a securities exchange, and the
information technology that nowadays drives this
environment as a whole. A securities exchange is
an organized and supervised market place where
trades are made based on an approved set of rules

and regulations [1]. We use the term broadly, re-
ferring to dealer networks as well as to traditional
exchanges.
A securities exchange is a secondary market. A
primary market is where newly issued shares are
publically offered through what is commonly
known as initial public offering (IPO). In trading
securities on a stock exchange, members may act
either as brokers (agents), or as dealers (princip-
als), or as both (Figure 1).

Investor (Client) A Investor (Client) B

Orders placed over the phone or over the internet

Intitution B – non exchange
member

Institution A – exchange member

Securities Exchange

Broker Orders

Principal Orders

Fig. 1. The order routing, from the investors to the securities exchange

The securities traded include stocks, bonds and
warrants. A listed company issues shares of a
stock. Orders for trading those shares originate
with investors, and are brought to an exchange by
intermediaries. The confirmation of each trade by
the stock exchange goes both to members and to

settlement organizations and central counterparty
(CCP). The settlement organizations subsequent-
ly confirm settlement of the trades to the stock
exchange members, who in turn send confirma-
tion to the investors, the end buyers and end sel-
lers. The settlement organizations, such as Euroc-

1

Informatica Economică vol. 13, no. 2/2009

77

lear, Clearstream, and Sega Inter Settle (SIS) in
Europe, and Depository Trust & Clearing Corpo-
ration (DTCC) in the United States, maintain
technical interfaces with the stock exchanges and
their members, and they organize the exchange of
cash and securities on a delivery-versus-payment
basis. The central counter-party is contractually

interposed between the trading parties, and it
provides post trade anonymity, netting and coun-
terparty risk management services. All these par-
ties and the interactions between them compose
the value chain of a securities exchange. Figure 2
provides an overview upon the elements of the
value chain and the connections between them.

Exchange

BUY

Intermediary SELL

Settlement Organization

Intermediary

Fig. 2. The elements of an equities market, and the interactions between them

2 The elements of the value chain
The listed companies – the issuers, the companies
who are obtaining equity financing through new
share issuance, supply the securities traded on a
stock exchange. As mentioned earlier, the initial
issuance in the case of shares constitutes what is
designated as primary market. By listing on an
exchange through an initial public offering, a
company that has previously been in private
hands goes public. An IPO involves fixing the is-
suing price and placing shares with investors,
usually via a consortium. The issuing price estab-
lished by the financial advisors is an indication of
the initial price determined at the stock exchange.
However, the initial price set by trading after an
IPO may differ from the IPO price, depending on
the accuracy with which the IPO price was set in
the first place, and the distribution of forces (eco-
nomic interest from the investors, ultimately) in
supply and demand on the secondary market [2].
Exchange – a stock exchange is chiefly perceived
as a secondary market. Exchanges are interactive,
information-driven, and volume-driven market-
places. An exchange is the formal place where
supply meets demand in an organized, regulated
environment. The overall objective of an ex-
change is to attract liquidity, to execute orders
with reasonable speed and at minimal cost, and to
find appropriate prices for customers (members
and investors). Official exchange prices are set,
following approved rules and regulations, under
the surveillance of special regulators. The main
responsibility of an exchange is fair and orderly

price discovery for already issued securities, thus
facilitating their exchange.
Investors – the investors include individuals (re-
tail customers) and institutions (including mutual
funds, pension funds, and insurance companies)
who are interested in buying and selling securi-
ties, and who, in order to achieve this, hold cash
and securities accounts with intermediaries.
Intermediaries – the intermediaries are exchange
members who are either brokers acting on behalf
of investors as agent or dealers acting on their
own accounts as principal. Generally, the inter-
mediaries are supervised banks and financial in-
stitutions that have to meet specific regulatory
requirements in order to operate. A broker is an
exchange member who acts as an intermediary
between an investor and an exchange. Brokers do
not take orders on their own books, but merely
route them to a market. A broker acts as an agent,
on his or her name, on the client’s account. Some
intermediaries also supply marketability services
to public investors by trading in their own names
on their own accounts. When an intermediary
plays this role, he or she is termed a market mak-
er or dealer. The market maker is contractually
committed to provide liquidity to a marketplace,
by putting up quotes on both buy and sell sides of
the market. The market maker is also required to
maintain a fair and orderly market. A dealer does
not have such obligation. In most of the markets,
there is a separate intermediary with whom the
broker-dealer entities interact to effect settlement,
and who acts as custodian for maintaining the in-

Informatica Economică vol. 13, no. 2/2009

78

vestors’ cash and securities accounts.
Settlement organizations – the settlement organi-
zations ensure delivery versus payment of the
traded securities and payment of the money with-
in a predefined period of working days, usually
two or three working days (T+2, T+3), in both
United States and Europe. A physical exchange
of cash and products rarely take place anymore,
as the securities exchanged are all standardized
and dematerialized [3] [4].
Central counterparty – as we have mentioned
previously, a CCP is contractually interposed be-
tween the trading parties, and provides post trade
anonymity, netting and counterparty risk man-
agement services.

3 The Information Technology perspective
Having given the diversity and the sheer number
of the investors, the multitude of financial in-
struments and the volume of transactions, the
modern equity markets rely greatly on informa-
tion technology in order to fulfill their economic
and social role. Essentially, there is no aspect of
the value chain, succinctly introduced above,
which does not involve electronic data communi-
cation, at the very basic.
At this point, we would prefer to make a distinc-
tion, and identify two generic areas, not necessar-
ily disjointed, where the intrinsic models of the
information technology sustain the equity market:
 transactional area - concerning the whole flow
of order routing, order management, order match-
ing, trading executions, allocations, trade genera-
tion, client confirmations and settlement;
 valuation and analysis area - involving models
for equity data mining, price and volume analy-
sis, derivatives pricing, portfolio risk modeling
etc.
Having given the space allocated to this paper,
we will focus in the following pages on the In-
formatics related to the transactional area.
Therefore, in this delimited context, Figure 3 de-
picts, at very high-level, from the information
technology perspective, the dataflow related to
the trading activities that interconnect all the par-
ticipants on the equity market. At the broker’s
level, the functional components of the trading
system consist of:
 client interfaces;
 Order Management System (OMS);
 dedicated lines to various securities exchanges;
 trade generation;
 client confirmations;
 settlement and clearing.
The investors initiate the flow by placing buy or

sell orders with their brokers. The orders are
placed electronically, by the means of a client
application, which is usually supplied to the in-
vestor by its broker. The client application may
be either a secured webpage, which facilitates or-
der data transfer to the web server side hosted by
the broker, or a dedicated client, supplied by the
broker, that connects using TCP sockets, tunne-
ling data through a proprietary API, or an indus-
try standard like FIX (Financial Information eX-
change Protocol) to the broker’s server.
Once the client orders reach the broker’s trading
system, they may be introduced into the Order
Management System (OMS) or channeled direct-
ly to the exchange (Direct Market Access –
DMA), depending of the contractual agreement
between the investor and the broker. In both cas-
es, the investor’s orders are sent by the broker to
the securities exchange through dedicated com-
munication lines that employ proprietary APIs,
normally over TCP/IP connections.
Without entering into too many details for the
purpose of this paper, there may be distinct lines
supported by the exchange for receiving buy/sell
orders from the brokers/dealers, and for sending
back executions (order match results). The execu-
tion data, received by the broker/dealer back
from the exchange, it is put in connection with
the original order data within the Trade Manage-
ment System, and the actual trade data is generat-
ed. In case the investor has multiple accounts
opened with the broker, in order to have an ap-
propriate trade generation the investor has to
supply to the broker what is known as allocation
schema. That is commonly the case with an insti-
tutional investor. The allocation data consists in
instructions upon how the execution results are to
be distributed by the broker on the investor’s ac-
counts. The investor sends the allocation instruc-
tions to the broker by similar means as the
buy/sell orders. There are cases where the alloca-
tion instructions may apply to the entire trading
activity of the investor for a certain day, and not
attached to each individual order. In this situation
the allocation data flow, between investor and
broker, may be arranged in a simplified manner
(upload a file containing the allocation instruc-
tions on the broker’s website, or running a FTP
based batch, for instance).
After the trade is made, within the broker/dealers
trading system, there is subsequent data
processing in order to generate settlement in-
structions that have to be sent to the settlement
organization. The settlement organization will
then ensure delivery versus payment and pave the

Informatica Economică vol. 13, no. 2/2009

79

way for clearing between the participants on the securities marketplace.

Client 1

Order Management System

Client 2 Client n

Line 1 Line 2 Line n

Securities Exchange

. . .

. . .

Client Interface

Exchange Interface

Trade Management System

Client Confirmations

Settlement System

Broker / Dealer
Trading System

Settlement /
Clearing Agency

Investitors
(financial institutions,
banks, hedge funds,

individuals)

Fig. 3. The general data flow between the participants on the equity market

Figure 4 illustrates the data communication tech-
nologies employed for transferring messages with
financial content between the participants on the
equities market.
It is worth pointing out that the technology dif-
fers considerably, depending on the factors like:
 data volume, and frequency of message ex-
changes;
 security measures required for privacy protec-
tion of the sensitive data;
 data transfer speed requested for orders to
reach the exchange, and the response time for ac-
knowledgments;
 novelty and accuracy of the market data (see
aspects related to price discovery);
 available industry standards and common prac-
tices among the participants.
Considering the above, there can be identified
various data flows channeled through specific
technologies.
The flow between investors and intermediaries:
 for fast connections and direct market access
(DMA): TCP sockets and industry standard (FIX)
or broker proprietary protocols [5]; client-server
architectures over TCP/IP;

 client application running in a web browser, on
the investor’s side (HTML, SOAP-stub, HTTP
GET/POST, JavaScript, Java Applets, Java RMI
(stub) etc.), having as correspondent functionali-
ties offered through a web server on the broker’s
side (PHP, SOAP-skeleton, Java Servlets, Java
RMI (skeleton) etc.).
Flow between broker/dealer and securities ex-
change:
 dedicated and highly secured communication
lines, employing an exchange specific protocol
over TCP/IP.
Flows between exchange, broker/dealer and in-
stitutional investor, on one side, and settlement,
clearing organization, on the other side:
 industry standard protocols like FIX protocol
or the financial messaging network offered by
SWIFT (Society for Worldwide Interbank Finan-
cial Telecommunication) [5], both over TCP/IP.
Price data flow between a securities exchange
and the investors:
 real-time quotes distributed via proprietary me-
chanisms like NASDAQ ITCH, normally using
UDP sockets;
 delayed price data fetched by clients using

Informatica Economică vol. 13, no. 2/2009

80

SOAP, HTTP GET/POST.

Investors
(financial institutions, banks, hedge funds, individuals)

Intermediaries
(investment banks, brokerage houses)

Securities Exchange

Settlement / Clearing Agency

TCP sockets,
industry standard
protocols (FIX,
SWIFT)

TCP sockets,
industry standard
protocols (FIX,
SWIFT) TCP sockets,

dedicated
communication lines
with proprietary
protocols

TCP sockets, industry standard
(FIX) and proprietary
protocols, Web Services
(WSDL, SOAP, XML, HTML,
HTTP GET/POST, PHP, Java
RMI, JavaScript)

UDP sockets,
proprietary protocols

(NASDAQ ITCH),
Web Services (WSDL,
SOAP, XML, HTML,

HTTP GET/POST)

TCP sockets,
industry standard
protocols (FIX,
SWIFT)

Fig. 4. The technologies employed for data communication between parties

4 Upon a collaborative architecture of a trad-
ing system
We have presented briefly the data flow and the
technologies commonly employed for transfer-
ring data between the participants. Now, we will
take a closer look on how the data processing is
organized within a brokerage house, the place
where the investor orders are put in connection
with the exchange executions and where the elec-
tronic trades are generated.
We will focus on the order management system
(OMS), since this area influences decisively the
interface between the investors and the brokerage
house. The literature regards it as the Front Of-
fice [6]. There are various architectural approach-
es for handling the investors’ buy/sell orders,
sending them to the market, and processing the
executions received back from the exchange.
Each component can supply its functionality
within a cascade type of processing model, where
each module enrich the data from a certain pers-
pective and then pass it to the next module along
the overall processing chain [7]. Within such ar-
chitecture, the system modules are tightly
coupled, and a malfunction in one of the chain’s
components may bring down the whole
processing flow. Over the years, the tendency has
been oriented toward architectures with loosely
coupled modules, where the functionality is pro-
vided based on publisher-consumer paradigm.
That potentially involves a multitude of service
providers and consumers, all interconnected
through a communication platform called mid-

dleware. In this architectural approach, the mid-
dleware handles the entire communication layer,
which, otherwise, would have had to be embed-
ded in each of the system’s components [8] [9]
[10]. The communication layer provides a com-
mon application programming interface (API)
that allows for a standardize way of exchanging
messages between the functional modules of the
system. In this manner, the application program-
mer can freely focus on the functionality deliver-
able by the application, rather than on how to in-
terconnect it with other components of the trad-
ing system. Figure 5 shows such a generic archi-
tecture for a trading system, each component be-
ing plugged in system through a network daemon
(ND) which ensures the creation of a virtual net-
work dedicated to the trading system. The ND is
a middleware component, and commonly serves
as a general purpose platform for process com-
munications in a distributed computing environ-
ment. In the larger family of distributed applica-
tions, collaborative systems are distinguished by
the fact that the agents in the system are working
together towards a common goal and have a criti-
cal need to interact closely with each other: shar-
ing information, exchanging requests with each
other, and checking in with each other on their
status. The applications that compose the system
may be pure client applications, or play, simulta-
neously, the role of client and server. The net-
work daemon has to be present and running on
each physical machine part of the system virtual
network, in order to allow the applications resid-

Informatica Economică vol. 13, no. 2/2009

81

ing on the machine to access other resources
within the system. Each application has to sub-
scribe to a set of messages that is interested in
and/or publish its availability in offering specific
services. The messages between applications are

channeled point-to-point using TCP sockets,
broadcasted to all applications within the system
via UDP sockets, or delivered to a subset of ap-
plications through a multicast implementation
[8].

Client 1

OMS 1

OMS 2

Client 2 Client n

Log 1 Log 2

Order Management System
Communication Platform

Line 1 Line 2 Line n

ND

ND

ND

ND ND

ND
ND

ND

Securities
Exchange

. . .

. . .

ND
ND

Exchange Line
Connections

Client
Connections

System DB

ND

Fig. 5. A generic distributed architecture of a trading system based on publisher-consumer paradigm

There are commercial solutions on the market
that offer this kind of middleware functionally,
such as TIBCO Rendezvous. It offers APIs for

Java, C, C++, C#, Perl, and COM. Opting for
such a generic platform may be costly.

Network

OS Kernel

Computer A

OS Network
Services

Distributed Applications

Middleware Services

Computer A Computer A

OS Kernel

OS Network
Services

OS Kernel

OS Network
Services

Fig. 6. The location of a middleware component in distributed computing environment

Many trading system providers or brokerage
houses though, are tempted to opt for developing
an in-house solution, better tailored for their spe-
cific environment [9] [10]. Figure 6 illustrates a
middleware platform that conceals the communi-
cation specific aspects from the application layer.
The middleware isolates the applications from

the operating system specific network services,
and encapsulates all the necessary functionality
for delivering a transparent messaging service
[11].
There are alternatives supported by components
created in the open-source community, based on
Java Message Service, to commercial products

Informatica Economică vol. 13, no. 2/2009

82

like TIBCO Rendezvous [12] [13]. Sun Java Sys-
tem Message Queue is an affordable, standards-
based messaging solution based on the open-
source Open Message Queue project. It dramati-
cally reduces the time needed to develop distri-
buted applications because it handles all the inter-
process communication aspects of an n-tier archi-
tecture. Normally, a middleware does not need to
provide persistence for the messages it handles,
but sometimes persistence is necessary or even
required. This aspect is still debated in the scien-
tific community; since persistence seems to not
be a functionality to implement at the middleware
level and may impair the overall response time.
On the other hand, there are situations when, due
to unexpected failures, the entire system has to be
brought back to the state prior the temporary sus-
pension. Trading systems tend to need coverage
for the latter scenario.

5 Collaborative developments employing a si-
mulation matching engine
Most of the modules within a trading system
have to be designed, implemented and tested in
an environment that reproduces faithfully the
real-time connectivity to a securities exchange.
Usually, the stock exchanges offer to their mem-
bers testing environments available in non-
working days. There can be offered availability,
for limited testing activity, even during the work-
ing days, in specially insolated environments. In
order to satisfy their needs for conducting colla-
borative tests, financial software providers and
the brokerage houses require a dedicated, readily
available environment for trading simulation.
Figure 7 shows how the components of the simu-
lation environment can replace the functionality
of a real stock exchange order-matching engine.

Simulation
Matching Engine

Stock Exchange
Matching Engine

A Trading System (primarily Order Management Server)

Real-time stock
exchange price feed

Engine for
randomly
generated

Buy/Sell orders

Delayed stock
exchange prices

Configuration
GUI

Order/Execution
Flow

Order/Execution
Flow

Fig. 7. A simulation order matching system, in connection with a real OMS

The essential data that has to be send to an order-
matching engine consists of:
 financial instrument identification code (stock
symbol), notated herein with ID; which follows a
stock exchange specific coding rules;
 targeted stock exchange or section of a stock
exchange, E; represents the market that the
buy/sell order is intended to reach;
 the actual side of the order, buy (bid) or sell
(offer) intention, notated with B or S respective-
ly;
 the price at which the order is desired to be ex-
ecuted, if it is a limit order, or zero in case the
order is to be executed at the market price (p);
 order quantity, which designates the number or

shares that are intended to be bought or sold,
normally a integer number, multiple of a stock
specific lot size (q).
The actual messages, transferred between bro-
ker/dealer and exchange, have in fact a much
more complex structure (data for identifying the
client, other trading conditions and control data),
but the above is the minimal data set necessary
for the order-matching engine to accomplish its
role.
The simulation order-matching engine accepts
orders placed from the trading system connected
to it, and try to match them with orders generated
randomly, within certain parameters of price and
quantity, and with a configured frequency. The

Informatica Economică vol. 13, no. 2/2009

83

parameterization can be realized from a configu-
ration setting graphic user interface (GUI). In
addition to the configuration ability, a feed with
delayed prices from e real exchanged (this data
can be also stored and used to reproduce various
trading scenarios) can provide certain limits to
for the orders generated randomly. Alternatively,
the simulation order-matching engine can be fed
with real-time prices coming from a real stock
exchange.
The order-matching engine has to maintain, for
each traded symbol, an order book structured as
is illustrated in Figure 8.
Once a new order reaches the electronic system
the securities exchange, the order receives a uni-
quely identified code for the given trading day
(O), and a timestamp (t), representing the mo-

ment when the order was registered in the sys-
tem. At any given moment, during the trading
session, the exchange system has to maintain the
whole information related to the outstanding or-
ders: the orders that either were not fully ex-
ecuted, nor entirely canceled by the client, and
are still opened on the market for being matched
with orders placed on the side. For each symbol,
the exchange system has to determine a market
price at the beginning of the trading session,
based on an auctioning mechanism. Then, during
the trading session, the price at which the last
transaction took placed becomes the published
market price that is to be considered for the or-
ders sent to the exchange to be executed at the
market.

BUY (Bid) SELL (Ask)

Instrument Identification Code (exchange symbol)

1,500

1,400

1,300

1,200

1,100

1,000

900

700

800 3,000

1,000 4,000

Price Levels Quantities

Market Price (MP)
(the price at which the

most recent order match
has taken place)

2,000 2,000 5,000

Fig. 8. The stock exchange order book with a new buy order

The order-matching engine has to offer real-time
response; therefore, the whole data structure used
for storing the orders sent to the market has to be
modeled in the memory. The order-matching al-
gorithm has to abide by the following principles:
 best price priority – the highest bid is consi-
dered the best price for the buy side, and the low-
est ask is considered the best price for the sell
side; in Figure 8, the newly arrived sell order of
2,000 shares (dotted line square), at the limit
price 1,000 represents a better offer on the market
than the exiting outstanding orders and will be
executed as soon as the matching algorithm iden-
tifies a corresponding buy order;
 time priority – in case there a multiple orders,
on the same side, placed at the same price, the
orders that reached the exchange system earlier
have priority;
 orders placed the market price have to be satis-

fied first – since the investor who placed an order
at the market price takes a higher risk than the
one who placed a limit order; that risk has to be
rewarded through a swift execution and, as we
mentioned earlier, the securities exchange system
has available, at any moment, a published market
price (MP) for each listed stock (symbol).
The data structure that we propose for the simula-
tion order-matching engine is illustrated in Figure
9. There can be identified four levels, suggested
by the principles enounced above.
At the first level are stored, for each listed stock
on the exchange, the identification code ID (ex-
change symbol), the market (section) code E, the
current published market price MP, and links to
the outstanding buy and sell orders.
Level two contains, for each side, a linked struc-
ture of prices, sorted upon the best price priority
principle enounced earlier: descending order for

Informatica Economică vol. 13, no. 2/2009

84

the list of bids, and ascending order for the list of
asks. Having this in place, assures an orderly and

fast searching for the matching algorithm.

ID2 MP2 E

B S

ID1 MP1 E

B S

IDn MPn E

B S

Cp11 Cp12 Sp13 Sp1k

Bp11 Bp12 Bp13 Bp1m

Bt121 Bt122 Bt123 Bt12p

Bt111 Bt112 Bt113 Bt11r

O1

O2

O3

O4

O5

Os

2.

3.

4.

1.

Fig. 9. The proposed data structure for the order-matching algorithm

Level three has a similar role, introducing a hie-
rarchy based on time, among the orders placed at
the same price; the earlier orders are placed in the
front.
On the fourth level will be stored the entire order
data (O), including the quantity that is to be ex-
ecuted or remained to be executed, the state of

the order, other conditions in the case or condi-
tional orders (fill or kill, all or none, stop loss,
immediate or canceled etc.)
When a new order arrives on the market (reaches
the simulation order-matching engine), the
matching algorithms follows the steps summa-
rized below [14].

MP  the closing price of the previous trading day

while (trading session is open)

insert a new order in the system data structure
compose the searching key: {ID, (B/S), p, t}
search for a match,
either in Buy or Sell order space

if (match found for the new key)

update the correspondent quantities
for the mathed orders
update the status of the matched orders
(fully executed orders are deleted from the system)
inform the clients upon the new order match

else
 continue

The simulation order-matching engine collabora-
tively interacts with the trading system connected
to it and, along with the engine that randomly ge-
nerates orders to offer matching opportunities in

the simulation environment, accomplish the goal
of creating a realistic testing environment in
which the trading activity can be conducted con-
tinuously and smoothly.

Informatica Economică vol. 13, no. 2/2009

85

6 Conclusions
The information technology employed for sus-
taining the modern trading activity requires com-
ponents that interact closely to each other, in a
collaborative fashion, for the common goal of
executing the clients’ orders. Our research is cur-
rently directed toward creating a collaborative in-
frastructure for a trading system, based on Open
Message Queue. The main purpose is to provide
a middleware capable of sustaining future expe-
riments regarding trading strategies, by allowing
collaborative interactions between various and
distributed components. Through such a commu-
nication platform, the modules composing the
distributed system are inheritably capable of
knowing more about each other and, consequent-
ly, interacting more efficiently as a whole. In a
simulated trading environment, a few human
agents compete on resources created by computer
algorithms, within a scenario-driven environ-
ment. The components that create these scenarios
have to sense the trading patterns of the human
agents, and act accordingly, in a collaborative
manner.

References
[1] A. R. Schwartz and R. Francioni, Equity Markets
in Action (The Fundamentals of Liquidity, Market
Structure & Trading), John Wiley & Sons, 2004.
[2] L. Harris, Trading and Exchanges, Oxford Univer-
sity Press, Oxford, 2003.
[3] A. W. Rini, Fundamentals of the Securities Indus-
try, New York: McGraw-Hill, 2003.

[4] B. Ghilic-Micu, Bursa de Valori, Bucuresti: Editu-
ra Economica, 1997.
[5] H. McIntyre, How the U.S. Securities Industry
Works - Updated and Expanded in 2004, New York:
The Summit Group Press, 2004.
[6] H. McIntyre, Straight Through Processing, New
York: The Summit Group Publishing, 2004.
[7] I. Ivan and C. Ciurea, “Using Very Large Volume
Data Sets for Collaborative System Study,” Informati-
ca Economică, vol. 13, no. 1/2009, Bucharest: INFO-
REC, 2009.
[8] A. S. Tanenbaum and M. van Steen, Distributed
Systems - Principles and Paradigm, New Jersey: Pren-
tice Hall, 2002.
[9] C. Vinţe, “Aspecte ale Proiectării unui Order Re-
quest Broker (ORB) - Partea I,” Informatica
Economică, vol. 5, no. 2 (18)/2001, Bucharest: IN-
FOREC, 2001.
[10] C. Vinţe, “Aspecte ale Proiectării unui Order Re-
quest Broker (ORB) - Partea a II-a,” Informatica
Economică, vol. 5, no. 3 (19)/2001, Bucharest: IN-
FOREC, 2001.
[11] R. W. Stevens, UNIX Network Programming –
Vol. 1, Networking APIs: Sockets and XTI, Second
Edition, Prentice Hall, 1998.
[12] A. S. Tanenbaum, Computer Networks - Fourth
Edition, New Jersey: Prentice Hall PTR, 2003.
[13] Sun Microsystems, Java Message Service. Avail-
able: http://java.sun.com/products/jms/
[14] C. Vinţe, Sisteme distribuite de asistare a
tranzacţiilor bursiere – Doctorate thesis, Library of
The Bucharest Academy of Economic Studies, Bu-
charest, 2006.

Claudiu VINŢE has over eleven years experience in the design and implementation
of software for equity trading systems and automatic trade processing. He is current-
ly CEO and founder of Opteamsys Solutions, a software provider in the field of se-
curities trading technology and equity markets analysis tools. Previously he was for
six years with Goldman Sachs in Tokyo, Japan, as Senior Analyst Developer in the
Trading Technology Department. In March 2006, Goldman Sachs acknowledged the
importance of the integer allocation algorithm created by Claudiu, and filed in his

name a patent application for Methods and apparatus for optimizing the distribution of trading execu-
tions with the US Patent Office (USPTO Application 20060224495). Claudiu graduated the Faculty of
Cybernetics, Statistics and Economic Informatics in 1994, Department of Economic Informatics, with-
in The Bucharest Academy of Economic Studies. He holds a PhD in Economics from The Bucharest
Academy of Economic Studies. His domains of interest and research include combinatorial algo-
rithms, middleware components, and web technologies for equity markets analysis.

